Geometry

5.8 Coordinate Proofs

Coordinate Proof

Place geometric _______ in a ______ plane (______)

When _____ are used for the _____, the result is true for ____ figures of that type

Use formulas to prove things

• _____ formula

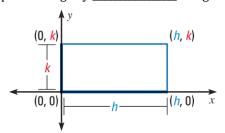
$$Midpt = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

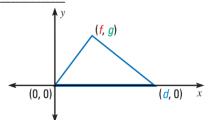
• _____formula

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

• _____formula

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

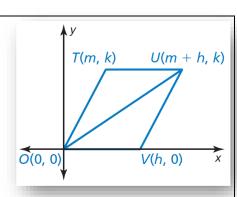

1. Use the _____ as a ____ or ____


2. Place at least one ______ of the polygon on an _____.

3. Usually keep the _____ within the _____.

4. Use ______ as _____ as possible.

You will prove things by ______, and ____



Place a **square** in a coordinate plane so that it is convenient for finding side lengths. Assign coordinates.

Place a **right triangle** in a coordinate plane so that it is convenient for finding side lengths. Assign coordinates.

Given: Coordinates of vertices of quadrilateral *OTUV*

Prove: $\angle TOU \cong \angle VUO$

Assignment: 277 #2, 4, 6, 8, 11, 12, 15, 16, 22, 23, 25, 26, 29, 32, 33 = 15 total